Note.

Aldolase-catalysed formation of D-glycero-D-manno-octulose from D-ribose and D-fructose 1,6-diphospate

GURI HAUSTVEIT*

Department of Pharmacognosy, Institute of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 3 (Norway)

(Received June 10th, 1975; accepted for publication, August 27th, 1975)

Jones and Sephton¹ demonstrated the formation of four octuloses from pentoses and D-fructose 1,6-diphosphate by aldolase catalysis. The octuloses retained the configuration of the original pentoses at C-5,6,7 and had the D-threo configuration at C-3,4. The formation of octuloses from pentoses in plants has also been demonstrated^{2,3}, and it was suggested that either aldolose or transaldolase is the enzyme catalyzing the condensation.

On preparing D-glycero-D-altro-octulose from D-ribose and D-fructose by the method of Jones and Sephton¹, it was noticed that, in addition to the expected octulose, another compound was formed, which gave a colour with orcinol characteristic for octuloses². This note describes the isolation and identification of the unknown octulose.

After treatment with phosphatase, fermentation, and preparative p.c., the octulose (3.7 mg), when isolated from an incubate of D-ribose, D-fructose 1,6-diphosphate, and aldolase (EC 4.1.2.13), had $[\alpha]_D + 22^\circ$ (c 0.2, water), and the same mobility in p.c. as D-glycero-D-manno-octulose (R_{FRU} 0.38 and 0.65, solvents A and B, respectively). Oxidation of the octulose with lead tetra-acetate⁴ gave ribose, and periodate oxidation of its methyl glycosides followed by reduction and hydrolysis gave mainly manno-heptulose. Thus, the octulose has the ribo configuration at C-5,6,7, and the manno configuration at C-3,4,5,6. The yield of D-glycero-D-manno-octulose was ~10% of that obtained for D-glycero-D-altro-octulose from the same incubate.

In order to show that the D-glycero-D-manno-octulose was not formed in the other enzyme incubations, the phosphates from the aldolase incubation were purified on an anion-exchange resin⁵, and then hydrolysed with acid. The products had chromatographic mobilities and colour reaction characteristic of D-glycero-D-manno-octulose and D-glycero-D-altro-octulose.

D-glycero-D-manno-Octulose is commonly found in higher plants⁶⁻⁸ and might¹ be the product of the catalytic activity of a 4-epimerase on D-glycero-D-altro-

^{*}Present address: National Institute of Public Health, Postuttak, Oslo 1, Norway.

NOTE 165

octulose. Enzymes catalyzing C-4 epimerizations in ketoses have been described in lower organisms⁹⁻¹¹. Apparently, D-glycero-D-altro-octulose has not been found in plants, but if present, for example as a phosphate, it would have been lost during deionization procedures.

D-glycero-D-manno-Octulose may also be a product of aldolase catalysis. Aldolase (EC 4.1.2.13) has been postulated¹² to give condensation products having the D-threo configuration at C-3,4. However, D-glycero-D-manno-octulose has the L-erythro configuration at these positions. Thus, its formation would imply an unspecific aldolase condensation taking place in addition to that expected. The cleavage of a ketose having a D-erythro configuration by rabbit muscle aldolase has been reported¹³.

EXPERIMENTAL

General. — P.c. was effected on Whatman No. 1 and 3MM papers, using A ethyl acetate-pyridine-water (8:2:1), B phenol-water (10:2), and C butanone-acetic acidwater saturated with boric acid (80:10:10). Detection was effected with orcinol ¹⁴, aniline, and silver nitrate ¹⁵. Borate complexes were detected with orcinol containing 10% of conc. hydrochloric acid. G.l.c. was performed on O-trimethylsilylated sugars ¹⁶, using a column (200 × 0.20 cm) of 3% of SE-52 on Gas-Chrom Q. Pentoses were analysed at 140° and heptuloses at 180° with a carrier-gas rate of 38 ml/min.

p-Ribose; p-fructose 1,6-diphosphate tetrasodium salt; aldolase from rabbit muscle (EC 4.1.2.13), grade 1; and acid phosphatase from wheat germ (EC 3.1.3.2) were obtained from Sigma.

Enzymic synthesis of the octuloses¹. — An aqueous solution of D-ribose (1 g) and D-fructose 1,6-diphosphate tetrasodium salt (2 g) was incubated with 200 mg of aldolase (12 units/mg of protein). Incubation, subsequent dephosphorylation with phosphatase, and deionization were performed as described by Jones and Sephton¹. The mixture was fermented² with bakers' yeast to remove the fructose, then filtered through Celite, and treated with ion-exchange resins. The concentrated mixture (340 mg) was fractionated by p.c. (solvent A). The zones corresponding to the two octuloses, detected by the orcinol test² on side strips, were eluted with water, and the solutions were deionized and concentrated. The slower-moving component was the unknown octulose.

Identification of the unknown octulose. — The octulose was identified by comparative p.c. (solvents A and B), optical rotation, and oxidative degradation with lead tetra-acetate, and by periodate oxidation of its methyl glycoside⁴. The identities of the resulting pentose and heptulose were established by g.l.c. and p.c. (solvents A, B, and C).

Isolation of the monophosphates. — D-Ribose (0.1 g) and the salt of D-fructose 1,6-diphosphate were incubated with aldolase as described above. After inactivation of the enzyme, the cooled filtrate was transferred to a column (1.5 × 22.5 cm) of Biorad AG-1 ×4 (HCOO⁻) resin (400 mesh). The neutral-sugar fraction was eluted

166 NOTE

with water, and the monophosphate with a linear gradient $(0 \rightarrow 1 \text{M} \text{ formic acid})$. Fractions (12 ml) were collected, and those (83–115) giving both positive octulose¹⁷ and positive phosphate¹⁸ tests were combined and concentrated.

The residue was treated with M hydrochloric acid at 100° for 2 h. After removal of hydrochloric acid by repeated evaporation with toluene and deionization, the neutral sugars were subjected to comparative p.c. (solvent A).

ACKNOWLEDGMENT

The author thanks Dr. N. K. Richtmyer for a sample of D-glycero-D-manno-octulose.

REFERENCES

- 1 J. K. N. Jones and H. H. Sephton, Can. J. Chem., 38 (1960) 753-760.
- 2 G. HAUSTVEIT, E. A. McComb, and V. V. Rendig, Carbohyd. Res., 39 (1975) 125-129.
- 3 G. HAUSTVEIT, E. A. McComb, and V. V. Rendig, Carbohyd. Res., 41 (1975) 363-365.
- 4 G. HAUSTVEIT AND J. K. WOLD, Carbohyd. Res., 29 (1973) 325-329.
- 5 G. R. BARTLETT AND G. BUCOLO, Biochem. Biophys. Res. Commun., 3 (1960) 474-478.
- 6 R. BEGBIE AND N. K. RICHTMYER, Carbohyd. Res., 2 (1966) 272-278.
- 7 N. K. RICHTMYER, Carbohyd. Res., 12 (1970) 233-239.
- 8 E. A. McComb and V. V. Rendig, J. Agr. Food Chem., 18 (1970) 1092-1094.
- 9 D. P. BURMA AND B. L. MORECKER, J. Biol. Chem., 231 (1958) 1053-1064.
- 10 N. LEE, J. W. PATRICK, AND M. MASSON, J. Biol. Chem., 243 (1968) 4700-4705.
- 11 J. D. DEUPREE AND W. A. WOOD, J. Biol. Chem., 245 (1970) 3988-3995.
- 12 B. L. HORECKER, O. TSOLAS, AND C. Y. LAI, in P. D. BOYER (Ed.), *The Enzymes*, Vol. 7, Academic Press, New York and London, 3rd edition, 1972, pp. 213-258.
- 13 T. Tung, K. Ling, W. L. Byrne, and H. A. Lardy, Biochim. Biophys. Acta, 14 (1954) 488-494.
- 14 R. KLEVSTRAND AND A. NORDAL, Acta Chem. Scand., 4 (1950) 1320.
- 15 W. E. TREVELYAN, D. P. PROCTER, AND J. S. HARRISON, Nature (London), 166 (1950) 444-445.
- 16 C. C. SWEELEY, R. BENTLEY, M. MAKITA, AND W. W. WELLS, J. Amer. Chem. Soc., 85 (1963) 2497–2507.
- 17 G. R. BARTLETT AND G. BUCOLO, Biochim. Biophys. Acta, 156 (1968) 240-253.
- 18 G. R. BARTLETT, J. Biol. Chem., 234 (1959) 466-468.